Baltimore Hosts Largest Physics Meeting of 2006

The latest developments in an incredible variety of research areas will be presented at the 2006 APS March meeting. The meeting, the largest physics conference of the year, with over 6500 papers being presented, will be held March 13-17 at the Baltimore Convention Center by the harbor in Baltimore, Maryland.

Sessions cover the latest research in condensed matter physics, biological physics, chemical physics, new materials, fluid dynamics, polymers, and large-scale computing. The diverse array of subjects includes planetary interiors, ultrafast chemistry, liquid splashing, biological swarming, optical clocks, snake infrared vision, nanoplumbing, microscale synthetic swimmers, a plastic-explosive-degrading enzyme, double electromagnetically induced transparency, antimicrobial coatings for medical devices, and fast electrons in graphene. A number of talks highlight the interdisciplinary nature of physics, showing how physics methods apply to problems from biology to economics, and even sports and traffic.

Physics also has implications for many social issues, and the program includes sessions that address topics such as Intelligent Design, nuclear proliferation and terrorism, physics in developing countries, and the changing dynamics of industrial research, as well as issues relating to university physics departments including the status of women, curricula trends, foreign students, and ethics.

A sampling of highlights of the meeting follows. The full program can be found online at http://www.aps.org/meet/MAR06/

Nobel Prize symposium
This Tuesday morning session will feature all three winners of the most recent physics prize, Ted Haensch, John Hall, and Roy Glauber. (session G1a)

Foundations of Evolution
From gene chips to microfluidics and nanotechnology, new tools now exist to test and explore biological evolution at a much deeper level than was possible 20 years ago. According to speaker Daniel Fisher of Harvard, evolution can

March Meeting continued on page 7
now become a quantitative experimental science, with the ability to do such things as manipulate microorganisms at the genetic level, move biomolecules with microfluidics, and make detailed measurements with state-of-the-art optics tools. The University of Chicago's Jim Shapiro will show how an information-science approach will offer many new details about evolution. Michael Deem of Rice University will explain how "Life Has Evolved to Evolve." (Session R7)